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Abstract
Plasmids	are	extra-	chromosomal	genetic	elements	that	encode	a	wide	variety	of	phe-
notypes and can be maintained in bacterial populations through vertical and horizontal 
transmission, thus increasing bacterial adaptation to hostile environmental conditions 
like those imposed by antimicrobial substances. To circumvent the segregational in-
stability resulting from randomly distributing plasmids between daughter cells upon 
division, nontransmissible plasmids tend to be carried in multiple copies per cell, with 
the	added	benefit	of	exhibiting	increased	gene	dosage	and	resistance	levels.	But	car-
rying multiple copies also results in a high metabolic burden to the bacterial host, 
therefore	reducing	the	overall	fitness	of	the	population.	This	trade-	off	poses	an	exis-
tential question for plasmids: What is the optimal plasmid copy number? In this manu-
script, we address this question by postulating and analyzing a population genetics 
model to evaluate the interaction between selective pressure, the number of plasmid 
copies carried by each cell, and the metabolic burden associated with plasmid bear-
ing in the absence of selection for plasmid- encoded traits. Parameter values of the 
model	were	estimated	experimentally	using	Escherichia coli K12 carrying a multicopy 
plasmid encoding for a fluorescent protein and blaTEM- 1, a gene conferring resistance 
to β- lactam antibiotics. By numerically determining the optimal plasmid copy number 
for constant and fluctuating selection regimes, we show that plasmid copy number is a 
highly optimized evolutionary trait that depends on the rate of environmental fluctua-
tion and balances the benefit between increased stability in the absence of selection 
with the burden associated with carrying multiple copies of the plasmid.

K E Y W O R D S
experimental	microbiology,	plasmid	dynamics,	population	genetics

T A X O N O M Y  C L A S S I F I C A T I O N
Genetics, Theorectical ecology

http://www.ecolevol.org
https://orcid.org/0000-0003-4791-7206
https://orcid.org/0000-0001-6335-121X
https://orcid.org/0000-0003-1289-2950
https://orcid.org/0000-0003-0986-6495
https://orcid.org/0000-0002-2767-0640
mailto:
https://orcid.org/0000-0002-1744-6506
http://creativecommons.org/licenses/by/4.0/
mailto:adriangcs@matem.unam.mx
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.9469&domain=pdf&date_stamp=2022-12-04


2 of 15  |     HERNANDEZ-BELTRAN et al.

1  |  INTRODUC TION

Prokaryotes	 transfer	 DNA	 at	 high	 rates	 within	 microbial	 commu-
nities through mobile genetic elements such as bacteriophages 
(Chen et al., 2018), transposons (Chen & Dubnau, 2004),	or	extra-	
chromosomal	 DNA	 molecules	 known	 as	 plasmids	 (Funnell	 &	
Phillips, 2004). Crucially, plasmids have core genes that allow them to 
replicate independently of the chromosome but also encode for ac-
cessory genes that provide their bacterial hosts with new functions 
and increased fitness in novel or stressful environmental conditions 
(Groisman & Ochman, 1996). Plasmids have been widely studied due 
to	 their	 biotechnological	 potential	 (Alonso	&	Tolmasky,	2020) and 
their relevance in agricultural processes (Pemberton & Don, 1981), 
but also because of their importance in clinical practice since they 
have been identified as significant factors contributing to the cur-
rent global health crisis generated by drug- resistant bacterial patho-
gens (San Millan, 2018).

Although	 the	distribution	of	 plasmid	 fitness	 effects	 is	 variable	
and	 context	 dependant	 (Alonso-	del	Valle	 et	 al.,	2021), it is gener-
ally assumed that in the absence of selection for plasmid- encoded 
genes, plasmids impose a fitness burden on their bacterial hosts 
(Baltrus, 2013; San Millan & Maclean, 2017).	As	a	 result,	 plasmid-	
bearing populations can have a competitive disadvantage com-
pared with plasmid- free cells, thus threatening plasmids to be 
cleared from the population through purifying selection (Vogwill 
& MacLean, 2015).	To	avoid	extinction,	some	plasmids	can	transfer	
horizontally to lineages with increased fitness, with previous the-
oretical results establishing sufficient conditions for plasmid main-
tenance, namely that the rate of horizontal transmission has to be 
larger than the combined effect of segregational loss and fitness 
cost (Bergstrom et al., 2000; Stewart & Levin, 1977).	 Also,	 some	
plasmids encode molecular mechanisms that increase their stabil-
ity	 in	 the	population,	 for	 instance,	 toxin-	antitoxin	systems	that	kill	
plasmid- free cells (Mochizuki et al., 2006), or active partitioning 
mechanisms that ensure the symmetric segregation of plasmids 
upon division (Salje, 2010).

To avoid segregational loss, nonconjugative plasmids lacking 
active partitioning and postsegregational killing mechanisms tend 
to be present in many copies per cell, therefore decreasing the 
probability of producing a plasmid- free cell when randomly seg-
regating plasmids during cell division. But this reduced rate of seg-
regational	loss	is	not	sufficient	to	explain	the	stable	persistence	of	
costly plasmids in the population, suggesting that a necessary con-
dition for plasmids to persist in the population is to carry beneficial 
genes for their hosts that are selected for in the current environ-
ment. However, regimes that positively select for plasmid- encoded 
genes can be sporadic and highly specific, so plasmid persistence 
is not guaranteed in the long term. Moreover, even if a plasmid 
carries useful genes for the host, these can be captured by the 
chromosome, thus making plasmids redundant and rendering them 
susceptible to be cleared from the population (Hall et al., 2016). 
This	evolutionary	dilemma	has	been	termed	the	“plasmid	paradox”	
(Harrison et al., 2012).

In this paper, we use a population genetics modeling approach 
to evaluate the interaction between the number of plasmid copies 
contained in each cell and the energetic cost associated with carry-
ing each plasmid copy. We consider a nontransmissible, multicopy 
plasmid (it can only be transmitted vertically) that lacks active parti-
tioning or postsegregational killing mechanisms (plasmids segregate 
randomly upon division). We will also consider that plasmids encode 
a gene that increases the probability of survival to an otherwise le-
thal concentration of an antimicrobial substance, albeit imposing a 
burden to plasmid- bearing cells in drug- free environments. To es-
timate parameters of our population genetics model, we used an 
experimental	 model	 system	 consisting	 on	 Escherichia coli bearing 
a multicopy plasmid pBGT (~19 copies per cell) carrying blaTEM- 1, a 
drug resistance gene that produces a β- lactamase that degrades 
ampicillin and other β- lactam antibiotics (Salverda et al., 2010; San 
Millan, 2018).

We used computer simulations to evaluate the stability of a mul-
ticopy plasmid in terms of the duration and strength of selection in 
favor of plasmid- encoded genes. This allowed us to numerically es-
timate	the	number	of	copies	that	maximized	plasmid	stability	under	
different environmental regimes: drug- free environments, constant 
exposure	to	a	lethal	drug	concentration,	and	intermittent	periods	of	
selection.	Altogether,	our	results	confirm	the	existence	of	two	op-
posing evolutionary forces acting on the number of copies carried by 
each cell: selection against high- copy plasmids consequence of the 
fitness cost associated with bearing multiple copies of a costly plas-
mid and purifying selection resulting from the increased probability 
of plasmid loss observed in low- copy plasmids.

2  |  METHODS

2.1  |  Serial dilution protocol

We	consider	a	serial	dilution	experiment	with	two	types	of	bacteria:	
plasmid- bearing (PB) and plasmid- free (PF). Let us denote by n the 
plasmid copy number (PCN) and argue that this is an important pa-
rameter: in the one hand, the selective disadvantage of PB individu-
als due to the cost of carrying plasmids is assumed to be proportional 
to n; on the other hand, the PCN determines the heritability of the 
plasmid.

In our schema, each day starts with a population of N cells that 
grow	exponentially	until	saturation	is	reached	(i.e.,	until	there	are	γN 
cells).	At	the	beginning	of	the	next	day,	N cells are sampled (at ran-
dom)	and	transferred	to	new	media	and	exponential	growth	starts	
again (Figure 1a).

2.2  |  Interday dynamics

To model the interday dynamics, we consider a discrete- time 
model	in	which	the	population	size	is	fixed	to	N. Day i starts with 
a fraction Xi	of	PB	cells	 (and	1 − Xi of PF cells). We consider that 
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the fitness cost associated with plasmid maintenance; κn is propor-
tional to the PCN, that is, κn = κn. This means that, at the end of day 
i, the number of PF cells is proportional to their initial frequency 
1 − Xi, while the number of PB cells is proportional to their initial 
frequency Xi	multiplied	by	 (1 − κn) < 1.	So,	at	the	end	of	day	 i, the 
fraction of PB cells would be

In addition, PB cells can lose their plasmids and become PF and 
with probability μn, so, at the end of day i, the fraction of PB cells 
needs	to	be	multiplied	by	(1 − μn).

At	the	beginning	of	day	i + 1,	we	sample	N individuals at random 
from the previous generation. Since N is very large, we can neglect 
stochasticity and assume that the fraction of PB cells at the begin-
ning of day i + 1	is	equal	to	their	fraction	at	the	end	of	day	i, that is,

Additionally,	we	aim	to	modeling	selection	for	plasmid-	encoded	
genes. For plasmids carrying antibiotic resistance genes, this is 
achieved	by	exposing	the	population	to	antibiotic	pulses.	Individuals	
with no plasmids suffer more from this treatment, so, at each pulse, 
we observe an increment in the relative frequency of the PB sub-
population. To model this phenomenon, we assume that, in the pres-
ence	 of	 antibiotic,	 PF	 individuals	 exhibit	 a	 selective	 disadvantage	
represented by parameter α ∈ [0,1].

For instance, if an antibiotic pulse occurs at day i, all PB cells sur-
vive, (there are NXi), but the PF cells die with probability α, so only 
N(1 − α)(1 − Xi) survive. So, the fraction of PB individuals, right after 
the antibiotic pulse becomes

Then,	cells	grow	exponentially	again,	as	in	a	normal	day,	so	that,	
at the end of the day, the fraction of PB cells is f(g[Xi]).

If we consider that the pulses occur at generations T, 2T,…, the 
frequency process becomes

2.3  |  Intraday dynamics

For the intraday dynamics, day i starts with a population of N cells 
(N∼ 105	in	the	experiment)	that	grow	exponentially	until	saturation	
is reached (i.e., until there are γN cells). The initial fraction of PB 
cells is Xi. We assume that, in the absence of antibiotic, the popu-
lation evolves as a continuous time multitype branching process 
Zt =

(
Z0
t
,Z1

t

)
, where Z0

t
 (resp Z1

t
) is the number of PB cells (resp. 

PF cells). The reproduction rate (or Malthusian fitness) of PB (resp. 
PF) individuals is r (resp. r + ρn), with ρn > 0	 (since	 PB	 individuals	
have some disadvantage due to the cost of plasmid maintenance). 
Following (González Casanova et al., 2016), we assume that 
�n

∼N−b for some b ∈	 (0,1∕2)	 (this	 regime	 is	 known	 as	moderate- 
strong selection).

We consider plasmids that lack active partitioning systems 
(Salje, 2010), so, at the moment of cell division, each plasmid ran-
domly segregates into one of the two new cells. Once in the new 
host, the plasmids replicate until reaching n copies. If, however, 
one of the two new cells has all the n copies, the other one will 
not carry any plasmid copy and becomes PF. Thus, we make the 
simplifying assumption that the daughter of a PB cell becomes 
PF with probability 2−n (segregational loss rate), as illustrated in 
Figure 1b. Therefore, at every branching event, an individual splits 
in two. Plasmid- free individuals only split in two PF individuals. 
Plasmid- bearing individuals can split in one PF individual and one 

(
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)
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)
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=
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F I G U R E  1 Schematic	diagram	of	the	model.	(a)	Serial	dilution	protocol.	PB	cells	are	represented	in	green,	while	PF	cells	are	represented	
in	gray.	We	show	3 days	of	the	experiments.	An	antibiotic	pulse	is	added	during	day	3.	(b)	Segregational	loss.	Upon	cell	division,	plasmids	are	
segregated at random between the two daughter cells. Then, the plasmids are replicated until the PCN is 4. When a cell inherits no plasmid, 
it becomes plasmid- free.

Day 1 Day 2

PB
PF

Sampling

Day 3

Sampling(a) (b)
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PB individual with probability 2−n (if all the plasmids go to one of 
them) or they can split in two plasmid- bearing individuals with 
probability 1– 2−n.

Let M(t) = {Mi,j(t): i,j =	 0,1}	 be	 the	 mean	 matrix	 given	 by	
Mi,j(t) = �ei

(
Z
j

t

)
, the average size of the type j population at time 

t if we start with a type i	 individual.	 According	 to	 (Athreya	 &	
Ney, 2004; section V.7.2), M(t)	can	be	calculated	as	an	exponential	
matrix

More precisely,

Let σ be the duration of the growth phase. Since N is very 
large,	one	can	assume	that	reproduction	is	stopped	when	the	ex-
pectation of the number of descendants reaches γN, that is, that 
σ satisfies

Since �n ∼ N
−b, we have for large enough N that

Since γN >> 1,	we	can	assume	that	the	number	of	PB	(resp.	PF)	
cells	at	the	end	of	the	day	is	equal	to	its	expected	value.	Therefore,	
the fraction of PB cells at the end of day i is equal to

This corresponds to Equation (2) with parameters

The importance of these formulas is that they connect measur-
able quantities with theoretical parameters, leading to a method to 
estimate	 the	parameters	of	 the	model	 from	experiments,	which	 is	
the	spirit	of	the	experiment	described	in	the	following	section.

2.4  |  Model parametrization

Our goal is to use the interday model to evaluate the long- term dy-
namics of plasmid- bearing populations in terms of the cost associ-
ated with carrying plasmids and the fitness advantage conferred by 
the plasmid in the presence of positive selection. To quantify these 
parameters	experimentally,	our	approach	consisted	 in	 two	phases:	
(1)	 from	growth	 kinetic	 experiments,	we	estimate	parameters	ρ, r, 
and σ	 of	 the	 interday	model,	 and	 (2)	we	 perform	 competition	 ex-
periments in a range of drug concentrations to obtain μn and κn using 
Equation (4) of the intraday model.

Our	experimental	model	system	consisted	in	E. coli K12 carrying 
pBGT, a nontransmissible multicopy plasmid used previously to study 
plasmid dynamics and drug resistance evolution (Hernandez- Beltran 

M(t) = etA where A =

⎛
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�
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�
⎞
⎟⎟⎠
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log�
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+ Xi
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Xie
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)
+ Xi

r2−n + �ne
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.

(4)

�n=

�n

(
1−e

−(r2−n+�n)�
)

r2−n+�n

∼��n=��n and �n=1−
r2−n+�n
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∼n→∞r�2
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.

F I G U R E  2 Growth	kinetic	experiment.	(a)	Schematic	diagram	illustrating	a	bacterial	growth	experiment	performed	in	drug-	free	media	
separately for PB and PF populations. We used an absorbance microplate reader to measure the optical density (OD630) at different time- 
points	during	the	24-	h	experiment.	(b)	Growth	curves	of	PB	(green)	and	PF	(black)	strains,	with	replicate	experiments	represented	as	shaded	
curves.	The	duration	of	the	exponential	phase,	σ,	was	estimated	by	identifying	the	start	of	exponential	phase	and	the	time	elapsed	before	
reaching carrying capacity. Parameter ρ	refers	to	the	maximum	growth	rate	of	the	PB	population,	while	the	selective	advantage	of	the	PF	
strain is represented with r.
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et al., 2020, 2022; Rodriguez- Beltran et al., 2018; San Millan 
et al., 2016). Briefly, pBGT is a ColE1- like plasmid with ~19 plasmid 
copies per cell, lacking the necessary machinery to perform conjuga-
tion or to ensure symmetric segregation of plasmids upon division. 
This plasmid carries a GFP reporter under an arabinose- inducible 
promoter and the blaTEM- 1 gene that encodes for a β- lactamase that 
efficiently degrades β- lactam antibiotics, particularly ampicillin 
(AMP).	The	minimum	 inhibitory	concentration	 (MIC)	of	PB	cells	 to	
AMP	 is	 8192 mg/L,	while	 the	 PF	 strain	 has	 a	MIC	 of	 4	mg/L	 (see	
Appendix A).

Growth	experiments	were	performed	in	96-	well	plates	with	lysog-
eny broth (LB) rich media and under controlled environmental con-
ditions. Using a plate absorbance spectrophotometer, we obtained 
bacterial	growth	curves	that	enabled	us	to	estimate	the	maximal	growth	

rate of the PB and PF strains, corresponding to r and ρn in the intraday 
model (Hall et al., 2014; Figure 2a and Appendix C).	As	expected,	we	
observed	a	reduction	in	bacterial	fitness	of	the	PB	subpopulation,	ex-
pressed	in	terms	of	a	decrease	in	its	maximum	growth	rate	when	grown	
in isolation. The metabolic burden associated with carrying the pBGT 
plasmid (n =	19)	was	estimated	at	0.108 ± 0.067	(Figure 2b).

We	 then	 performed	 a	 1-	day	 competition	 experiment	 consist-
ing	 of	 mixing	 PB	 and	 PF	 subpopulations	 with	 a	 range	 of	 relative	
abundances	 and	 exposing	 the	mixed	populations	 to	 environments	
with increasing drug concentrations (see Figure 3a for a schematic 
of	the	experimental	protocol).	Previous	studies	have	used	a	similar	
approach to determine a selection coefficient (Dykhuizen, 1990), a 
quantity that was used to show that selection of resistance can occur 
even at sublethal antibiotic concentrations (Gullberg et al., 2011). 

F I G U R E  3 Competition	experiment	under	a	range	of	drug	concentrations.	(a)	Schematic	diagram	illustrating	an	experiment	where	PB	and	
PF	are	mixed	at	different	relative	abundances	and	submitted	to	a	range	of	ampicillin	concentrations	(0,	1,	2,	2.5,	3,	3.5,	4,	and	6	μg/ml). We 
use	a	fluorescence	spectrophotometer	to	estimate	the	relative	abundance	of	plasmid-	bearing	cells	in	the	population	after	24 h	of	growth.	(b)	
Final PF frequency (illustrated in a gradient of green) for different initial fraction of PB cells and selection coefficients (top: Data; bottom: 
Model).	(c)	Control	experiment	illustrating	that	normalized	fluorescence	intensity	is	correlated	with	the	fraction	of	the	population	carrying	
plasmids. Each dot presents a replica and the dotted line a linear regression (R2 =	.995).	(d)	Experimental	iterative	map	showing	the	existence	
of	a	minimum	drug	concentration	that	rescues	the	PB	population	(red	lines).	At	low	drug	concentrations	(blue	lines),	the	PB	population	
decreases in frequency. (e) Theoretical iterative map obtained by numerically solving Equation (2) for a range of strength of selections and 
initial	PB	frequencies.	By	fixing	κn (previously estimated by growing each strain in monoculture), we fitted parameter α in Equation (2) to the 
experimental	data.	Colors	indicate	the	strength	of	selection	(in	blue),	values	of	α where the cost of carrying plasmids is stronger than the 
benefit resulting from positive selection, yielding curves below the identity line. Red curves represent simulations obtained with values of α 
strong enough to kill PF cells, thus increasing PB frequency in the population.
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Figure 3b shows the final PF frequency obtained for different initial 
population structures and strengths of selection.

The fitness cost associated with carrying plasmids in our inter-
day model was estimated from the proportion of PB cells at the 
end	 of	 a	 competition	 experiment.	 This	 quantity	 can	 be	 obtained	
from the normalized fluorescent intensity of the bacterial culture, 
measured with a fluorescent spectrophotometer or with flow cy-
tometry (Figure 3c shows a linear relationship between both quan-
tities). Figure 3d shows the end- point bacterial density resulting 
from	competition	experiments	with	different	initial	fractions	of	PB	
cells	exposed	to	a	range	of	AMP	concentrations.	Note	that,	at	 low	
AMP	concentrations	 (blue	 lines),	 the	frequency	of	plasmid	bearing	
is below the identity, consistent with plasmids imposing a fitness 
cost	to	PB	cells.	By	contrast,	at	high	AMP	concentrations	(red	lines),	
plasmid-	free	cells	are	killed	and	the	population	is	almost	exclusively	
conformed by PB cells.

In	the	model,	since	PCN	is	a	fixed	parameter,	the	PB	fraction	re-
sulting	from	a	competition	experiment	 in	 the	absence	of	selection	
only depends on the cost associated with plasmid bearing. Therefore, 
by fitting Equation (1), we estimated that the cost associated with 
carrying n = 19 copies of pBGT was κn = 0.272. Furthermore, by 
fixing	this	parameter	and	incorporating	antibiotics,	we	estimated	the	
selective pressure α for different antibiotic concentrations by fitting 
Equation (2)	 to	 the	experimental	data.	Figure 3e illustrates that at 
low antibiotic concentrations (small values of α) the frequency of the 
population is low, while higher values of α result in an increased PB 
frequency. Table 1 summarizes parameter values estimated for each 
strain in our model, and Table 2 shows the correspondence between 
antibiotic concentrations and α.

3  |  RESULTS

3.1  |  Segregational instability in the absence of 
selection

Our first aim was to evaluate the stability of a costly multicopy 
plasmid in the absence of selection for plasmid- encoded genes (i.e., 
without antibiotics). By numerically solving Equation (1), we evalu-
ated the stability of the PB subpopulation in terms of the mean PCN 
and the fitness cost associated with carrying each plasmid copy (see 
Appendix C).	As	expected,	in	the	absence	of	selection,	plasmids	are	
always cleared from the population with a decay rate that depends 
on	PCN.	We	define	the	time-	to-	extinction	as	the	time	when	the	frac-
tion of PB cells goes below an arbitrary threshold.

For cost- free plasmids (i.e., when κ =	0),	the	time-	to-	extinction	
appears to be correlated to PCN (Figure 4a). By contrast, if we con-
sider a costly plasmid (κ > 0)	 and	 that	 the	 total	 fitness	 cost	 is	pro-
portional to the PCN (i.e., if PCN = n, the total cost is κn = κn), then 
extinction	occurs	in	a	much	faster	timescale	(Figure 4b— notice the 
difference of timescales with Figure 4a).	 As	 shown	 in	 Figure 4b, 
small PCN values are associated with a high probability of segrega-
tional	loss,	and	therefore	the	time-	to-	extinction	increases	with	PCN.	
However, large values of PCN are associated with higher levels of in-
stability due to the detrimental effect on host fitness resulting from 
carrying multiple copies of a costly plasmid.

This	 observation	 indicates	 the	 existence	 of	 a	 nonlinear	 rela-
tionship between the stability of plasmids and the mean PCN of 
the	population.	To	further	explore	this	association,	we	computa-
tionally	 estimated	 the	 time-	to-	extinction	 in	 a	 long-	term	 setting	
(simulations	 running	up	 to	500 days)	 for	different	values	of	PCN	
and	fitness	cost.	As	expected,	Figure 4c shows an accelerated rate 
of plasmid loss in costly plasmids. Crucially, there appears to be a 
critical	PCN	that	maximizes	the	time-	to-	extinction,	which	depends	
on	the	per-	cell	plasmid	cost.	The	time-	to-	extinction	gives	a	notion	
of the stability of plasmids, but this measure may not apply if we 
introduce	antibiotics	and	therefore	avoid	plasmid	extinction.	For	
this reason, we also quantified plasmid stability by measuring the 
area	 under	 the	 curve	 (AUC)	 of	 simulation	 trajectories	 similar	 to	
those in Figure 4b. The heatmap illustrated in Figure 4d shows 
this	 measure	 highlighting	 the	 existence	 of	 a	 region	 in	 the	 cost-	
PCN plane, at intermediary PCN values, where plasmid stability 
is	maximized.

TA B L E  1 Model	parameters	estimated	using	growth	curves	experiments	in	the	absence	of	antibiotics

Parameter Measured value Formula Estimated value Description

r 0.435435 NA NA Plasmid strain growth rate

ρ 0.052334 NA NA WT growth rate advantage

σ 6.074089 NA NA Exponential	phase	duration

μn NA �n = 1 −
r2−n + �

r2−ne(r2
−n+�)� + �

5.938e−06 1- day fraction of segregants

κn NA
�n =

�

(
1− e

−(r2−n+�)�
)

r2−n + �

0.272313 Fitness cost

n 19 NA NA Plasmid copy number

TA B L E  2 Model	parameter	estimated	by	fitting	Equation (4) to 
experimental	data	obtained	for	a	range	of	ampicillin	concentrations

Amp κn α

0.0 0.272276 0.0

1.0 0.272276 −0.37781

2.0 0.272276 −0.332662

2.5 0.272276 −0.058457

3.0 0.272276 0.992911

3.5 0.272276 0.9801

4.0 0.272276 0.992075

6.0 0.272276 0.99373
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3.2  |  Evaluating the role of selection in the 
stability of plasmids

To study the interaction between plasmid stability and the 
strength of selection in favor of PB cells, we assumed that the 
plasmid carries a gene that confers a selective advantage to the 
host in specific environments (e.g., resistance to heavy metals 
or antibiotics). For the purpose of this study, we will consider a 
bactericidal antibiotic (e.g., ampicillin) that kills PF cells with a 
probability that depends on the antibiotic dose. This results in a 
competitive advantage of the PB cells with respect to the PF sub-
population in this environment. We denote the intensity of this 
selective pressure by α.

Figure 5a– g illustrates plasmid dynamics over time for different 
values of α, obtained numerically by solving Equation (2)	with	a	fixed	
PCN (n = 19) and drug always present in the environment (T = 1). In 
our model, then we found a critical dose that stabilizes plasmids in 
the population, that is, the minimum selective α, MSα = κn + μn(1 − κn; 
see Appendix B).	The	existence	of	a	minimum	selective	concentra-
tion (MSC) that maintains plasmids in the population is a feature 
used routinely by bioengineers to stabilize plasmid vectors through 
selective media (Kumar et al., 1991). Recall that in our model the 
PF MIC is α = 1; therefore, the MSα can be directly compared with 
the MSC/MIC ratio previously proposed (Greenfield et al., 2018; 
Gullberg et al., 2011) as a concern factor on the selection of resistant 
strains in the environment.

As	 illustrated	 in	Figure 5h, both low- copy and high- copy plas-
mids are inherently unstable and therefore the selective pressure 
necessary to stabilize them is relatively high, particularly for costly 
plasmids. Interestingly, at intermediate PCN values, the selective 
conditions necessary to stabilize plasmids are considerably less 
stringent than for low-  and high- copy plasmids. This is the result of 
the nonlinear relationship between MSα and n; since μn decreases 
exponentially	with	n, κn increases only linearly with n.

Figure 5i shows the time elapsed before converging to a steady 
state	(either	extinction	or	persistence)	for	different	values	of	α and 
PCN.	As	α increases, the cost of plasmid bearing is compensated by 
the benefit of carrying the plasmid and therefore plasmids are main-
tained in the population for longer. Note that at large values of α, 
plasmid- free cells are killed immediately independently of the mean 
PCN of the population, resulting very fast in a population composed 
almost	exclusively	of	plasmid-	bearing	cells.	Note	 that,	 in	 the	case,	
the steady state x∗ = 1 − �n

1− �n

� − �n

 is achieved independently of the 
initial fraction of PB cells (see Appendix B), which is consistent with 
previous	results	(Yurtsev	et	al.,	2013).

3.3  |  Plasmid stability in periodic environments

The purpose of this section is to understand the ecological dynamics 
of the plasmid- bearing population in fluctuating environments, that 
is, when periodic antibiotic pulses are administered. We started by 

F I G U R E  4 Numerical	results	for	the	model	without	selection	for	plasmid-	encoded	genes.	(a)	Plasmid	frequency	as	a	function	of	time	for	
a cost- free plasmid (κ = 0). Note how, as the PCN increases, the stability of plasmids also increases, although eventually all plasmids will be 
cleared from the system. (b) Dynamics of plasmid loss for strains bearing a costly plasmid (κ = 0.0143). In this case, low- copy plasmids (light 
blue	lines)	are	highly	unstable,	but	so	are	high-	copy	plasmids	(dark	blue	lines).	(c)	Time	elapsed	before	plasmid	extinction	for	a	range	of	PCNs.	
A	very	costly	plasmid	(κ = 5%) is represented in dark purple, while the light purple line denotes a less costly plasmid (κ = 0.5%). (d) Plasmid 
stability for a range of fitness costs and PCNs (discrete colormap indicates level of stability, yellow denotes higher stability, while dark purple 
denotes	rapid	extinction).	Stability	is	measured	as	the	area	under	the	curve	(AUC)	of	trajectories	similar	to	those	in	(b),	expressed	in	log10 
scale.	Notice	that,	for	intermediate	fitness	costs,	the	PCN	that	maximizes	plasmid	stability	can	be	found	at	intermediate	values.
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8 of 15  |     HERNANDEZ-BELTRAN et al.

exploring	the	time	duration	a	PB	population	can	survive	without	an-
tibiotics before being rescued by a strong antibiotic pulse (Figure 6a). 
Consistently with the results from the first section, lower plasmid 
costs result in increased rescue times, suggesting that a lesser rate 
of	antibiotic	exposure	is	required	for	their	maintenance.	In	Figure 6b, 
we quantified this minimal period as a function of PCN and α. Note 
that higher values of α correspond to longer periods, which follows 
from the fact that a higher selective pressure increases the PB fre-
quency. Figure 6d illustrates this critical period for PCN = 19.

In periodic environments, the relative abundance of the PB 
population	 is	 driven	 to	 zero	 (extinction)	 or	 reaches	 a	 steady	 state	
in which the plasmid fraction oscillates around an equilibrium fre-
quency (persistence). In Figure 6c, times to stabilization were es-
timated for the strong selection regime (α = 0.99), using the same 
PCNs as in Figure 5i.	Notice	that	the	time-	to-	extinction	is	larger	than	
the	time	to	reach	the	periodic	attractor.	In	both	cases,	the	maximal	
time to rescue and the minimum period to avoid loss, we observe 
a nonmonotone effect of PCN and, therefore, a range of PCNs 
whereby	plasmid	stability	is	maximized.	This	is	consistent	with	what	
we observed without antibiotics (Figure 4c) and with constant envi-
ronments (Figure 5h).

3.4  |  Optimal PCN depends on the rate of 
environmental fluctuation

In	this	section,	we	aim	at	exploring	the	concept	of	optimal	PCN	and	
how it depends on the environment. To do so, we define the optimal 
PCN	(hereafter	denoted	PCN*)	as	the	PCN	that	maximizes	the	area	
under	the	curve	(AUC)	of	the	PB	frequency	over	time.	This	notion	of	
stability was already introduced in Figure 4d and has the advantage 
that	it	can	be	used	when	the	PB	fraction	goes	to	0,	to	a	fixed	equilib-
rium, or when it oscillates.

First, we calculated PCN* for a range of plasmid fitness costs 
in the absence of selection (black solid line of Figure 7a) and found 
that PCN* is inversely correlated with the plasmid fitness cost. In 
order to compare the optimal PCN predicted by the model with PCN 
values	 found	 in	 other	 experimental	 plasmid-	host	 associations,	 we	
searched the literature for studies that measure both PCN and fit-
ness cost. These values are summarized in Table 3 and illustrated in 
Figure 7a. The values of PCN found in the literature were below the 
predicted PCN* in an antibiotic- free regime (black solid line), sug-
gesting that plasmids would be unstable in the absence of selection. 
But, crucially, PCN values obtained from the literature are within the 

F I G U R E  5 Numerical	results	illustrating	the	effect	of	a	constant	selective	pressure	in	the	stability	of	nontransmissible	multicopy	plasmids.	
(a–	g)	Each	box	illustrates	the	temporal	dynamics	of	the	plasmid-	bearing	subpopulation	in	a	pairwise	competition	experiment	inoculated	
with equal initial fractions of PF and PB. From left to right, α =	0,	0.2,	0.26,	0.28,	0.6,	and	1.	The	dotted	line	denotes	MSα = κn + μn(1 − κn) for 
n = 19 and κn = 0.27. Note that for values of α < MSα, plasmids are unstable and eventually cleared from the population, while for α > MSα 
the	plasmid-	bearing	subpopulation	increases	in	frequency	until	reaching	fixation.	For	α = MSα, the selective pressure in favor of the plasmid 
compensates	its	fitness	cost	and	therefore	the	plasmid	fraction	remains	constant	throughout	the	experiment.	(h)	Minimum	selective	
pressure required to avoid plasmid loss for a range of PCNs. Different curves represent plasmids with different fitness costs (light purple 
denotes	cost-	free	plasmids	and	dark	purple	a	very	costly	plasmid).	Note	that,	for	costly	plasmids,	there	exists	a	nonmonotone	relationship	
between MSα and PCN. (i) Time elapsed before plasmid fraction in the population is stabilized, for different copy numbers (5 in magenta, 
19	in	black,	and	30	in	cyan).	Dotted	lines	represent	plasmid	fixation,	while	dashed	lines	denote	stable	coexistence	between	plasmid-	free	
and	plasmid-	bearing	subpopulations,	and	solid	lines	plasmid	extinction.	The	vertical	line	indicates	MSα, the minimum selective pressure that 
stably	maintains	plasmids	in	the	population.	Black	letters	indicate	the	parameter	values	used	in	the	examples	shown	in	(a–	g).
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    |  9 of 15HERNANDEZ-BELTRAN et al.

blue- shaded area that represents the PCN* estimated for different 
environments (observe the nonlinear relationship between α, PCN*, 
and cost, in line with our previous findings).

These observations would be consistent with the constant use 
of antibiotics at low doses that reduces the optimal PCN. However, 
similar PCN* values can be achieved by administering higher doses 
of antibiotics periodically, as illustrated in Figure 7b for the case of 
pBGT. Notice again the nonlinear relationship between PCN* and 
the	frequency	of	antibiotic	exposure.	At	very	 low	frequencies,	the	
PB	population	goes	extinct	before	the	first	antibiotic	pulse	and	inter-
mediate	PCNs	maximize	the	AUC	as	in	Figure 4d.	At	high	antibiotic	
frequencies, the PB population persists and oscillates around some 
value that increases with PCN. This is consistent with a previous 
experimental	 study	 that	 evaluated	 the	 stability	 of	 costly	 plasmids	
in terms of the frequency of environmental fluctuation (Stevenson 
et al., 2018).

Periodic environments provided us with insights into how se-
lection acts on the mean PCN of the population, but natural envi-
ronments are not periodic but randomly alternate between intervals 
of positive and negative selection. The role of environmental sto-
chasticity in the stability of multicopy plasmids (Münch et al., 2019; 
Rodriguez- Beltran et al., 2018) and, in general, in the population 
dynamics	 of	 asexual	 populations	 has	 been	widely	 studied	 (Kussell	
& Leibler, 2005; Raj & van Oudenaarden, 2008). In our model, we 
generated stochastic environments that randomly switch from 
antibiotic-	free	to	antibiotic	for	a	period	of	1000 days.	Each	random	

environment is represented by a sequence of 1s and 0s, correspond-
ing to days with and without antibiotics, respectively. Therefore, 
stochastic environments can be characterized by their Shannon's en-
tropy (environmental entropy, H) and the fraction of days with drug 
exposure	(antibiotic	rate,	AR)	(see	Appendix C). Environments were 
classified	into	“High”	and	“Low”	depending	on	whether	the	AR	was	
greater or lower than 0.5. Mind that each value of H corresponds to 
two	AR	values	AR	and	1 − AR.

Panels on Figure 7d,e show the PCN* found by applying the 
stochastic	 environments	 ordered	by	 entropy	 (or	 by	AR),	 for	 dif-
ferent values of α. For low values of α, only high antibiotic rates 
lead to plasmid persistence. Notice the nonlinear relationship 
between	PCN*	and	AR,	similar	to	the	observed	for	the	period	in	
the	deterministic	setting;	PCN*	decreases	with	AR	at	 low	values	
(corresponding	 to	extinction)	 but	 increases	with	AR	at	 high	val-
ues (corresponding to persistence). For higher values of α, we 
observed	that	high	AR	always	leads	to	persistence,	while	low	AR	
can	lead	to	extinction	if	entropy	is	low.	In	fact,	these	low	values	
of the entropy corresponded to long periods without antibiotics 
that	 drove	 the	PB	population	 to	 extinction.	Another	 interesting	
remark is that the distribution of obtained PCN*s is multimodal; 
at	 fixed	entropy,	 plasmid	persistence	 is	 achieved	by	high	values	
of	AR	that	correspond	to	high	PCN*	or	by	low	values	of	AR	that	
correspond	to	a	small	value	of	PCN*.	Similarly,	a	fixed	value	of	α 
corresponds to two values of PCN* depending on the antibiotic 
rate (Figure 7c).

F I G U R E  6 Numerical	results	of	the	model	in	periodic	environments.	(a)	Maximum	time	a	plasmid	population	can	grow	without	antibiotics	
to avoid plasmid loss when applying a strong antibiotic pulse. Curves represent how this time is affected by PCN. Blue intensity represents 
plasmid	cost,	and	black	line	indicates	results	using	the	pBGT	parameters.	(b)	Minimal	period	required	to	avoid	plasmid	extinction.	Simulations	
were performed using the pBGT measured cost (κ = 0.014). Red intensity represents different values of α. Note that higher values of α 
increase the minimal period. (c) Time required for trajectories to stabilize for copy numbers 5, 19, and 30 using α = 0.99 and the measured 
cost	per	plasmid.	Note	that	there	is	a	critical	period	that	defines	fixation	or	coexistence	marked	by	red	and	blue	circles	on	the	PCN	= 19 
(black) curve. (d) Trajectories for the critical periods of PCN = 19 starting from 0.5 PB- PF frequency. Note that 1- day period difference leads 
to opposite outcomes.
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4  |  DISCUSSION

In this work, we used a population genetics modeling approach to 
study how nontransmissible plasmids are maintained in bacterial 
populations	 exposed	 to	 different	 selection	 regimes.	 In	 particular,	
we considered a small multicopy plasmid that lacks an active parti-
tioning mechanism and therefore segregates randomly upon cell 
division. Multicopy plasmids are prevalent in clinical bacteria and 
usually carry antimicrobial resistance genes that can be transferred 
between	neighboring	bacterial	cells	(Ares-	Arroyo	et	al.,	2022), as well 
as other evolutionary benefits that go well beyond horizontal trans-
fer (Rodríguez- Beltrán et al., 2021). For instance, as multicopy plas-
mids are present in numerous copies per cell, the mutational supply 
increases proportionately and, once a beneficial mutation appears, 
its frequency can be amplified during plasmid replication. This results 
in an accelerated rate of adaptation to adverse environmental condi-
tions (San Millan, 2018) and enables evolutionary rescue (Santer & 
Uecker, 2020).	Also,	multicopy	plasmids	increase	the	genetic	diversity	
of the population, thus enhancing survival in fluctuating environments 
(Hernandez- Beltran et al., 2022) and allowing bacterial populations to 
circumvent evolutionary trade- offs (Rodriguez- Beltran et al., 2018).

While the benefits of carrying plasmids may be clear under certain 
circumstances, their maintenance can be associated with a consider-
able energetic cost in the absence of selection for plasmid- encoded 
genes. This trade- off between segregational stability and fitness 
cost has been shown to drive ecological and evolutionary dynamics 
in plasmid- bearing populations (Paulsson & Ehrenberg, 1998), result-
ing	from	multilevel	selection	acting	on	extra-	chromosomal	genetic	
elements (Garoña et al., 2021; Paulsson, 2002). Plasmid population 
dynamics resulting from random segregation and replication result in 
a	complex	interaction	between	plasmid	copy	number,	genetic	dom-
inance, and segregational drift, with important consequences in the 
fixation	probability	of	beneficial	mutations	(Ilhan	et	al.,	2019) and the 
repertoire of genes that can be carried in mobile genetic elements 
(Rodriguez- Beltran et al., 2019). Besides a reduction in segregational 
instability, increasing the number of plasmids each cell carries also 
results in an increase in gene dosage (Dimitriu et al., 2021; Million- 
Weaver et al., 2012)	and	expression	variability	of	plasmid-	encoded	
genes (Hernandez- Beltran et al., 2022; Jahn et al., 2016). For this 
reason, plasmid control in wild- type bacteria is a tightly regulated 
process (Del Solar & Espinosa, 2000) that depends on the environ-
ment	and	the	host's	genetics	(Alonso-	del	Valle	et	al.,	2021). Precise 

F I G U R E  7 Optimal	PCNs	in	fluctuating	environments.	(a)	Optimal	plasmid	copy	number	(PCN*)	as	the	number	of	copies	that	maximizes	
the area under the curve of Figure 4b.	PCN*	decreases	exponentially	as	we	increase	the	fitness	cost	associated	with	carrying	plasmids,	as	
indicated in black solid line. Black dots show some PCN- costs data obtained from the literature. Red dots indicate the values of pBGT. Blue- 
scale lines indicate optimal PCN curves for many values of α. Light- blues indicate higher values of α whereas dark- blues indicate lower values 
of α.	Gray	line	shows	the	max	PCN	for	the	corresponding	plasmid	cost.	(b)	Optimal	PCN	in	periodic	environments.	Each	curve	corresponds	
to a value of α. Black line shows α = 0. Observe that for very short periods optimal PCNs are high, then for certain period the optimal PCN 
reaches a minimum then as period increases, the optimal PCN tends to the optimal of α = 0. (c– e) Optimal PCNs using random environments. 
(c) Environments are classified by their rate of days with antibiotics, the rate differences produce a multimodal outcome, where higher 
rates increase the optimal PCN and vice versa. Simulations using the same environments were made for different αs. Note that α intensity 
increases	the	separation	of	the	modes.	Modes	are	also	classified	by	their	stability,	persistence	marked	with	a	solid	border	line	and	extinction	
with a dashed border line. (d) Panel of optimal PCNs plotted by the environment entropy for sample α. Environments are classified by 
their antibiotic rate. (e) Panel of optimal PCNs plotted by the environment antibiotic rate for sample α. Environments are classified by their 
entropy.
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PCN control is also an important feature of synthetic genetic circuits 
that use plasmids as vectors for the production of recombinant sub-
stances (Rouches et al., 2022).

To	explore	the	 interaction	between	the	strength	of	selection	
and PCN, in this manuscript we postulated discrete- time and 
Wright– Fisher diffusion models with the following biological as-
sumptions: (1) Plasmids encode for accessory genes that confer 
an advantage in harsh environments, for instance, antibiotic resis-
tance genes; (2) bearing plasmids is associated with a fitness cost 
in the absence of selection for plasmid- encoded genes; (3) each 
plasmid segregates randomly to a daughter cell upon division; thus, 
plasmid- bearing bacteria can produce plasmid- free cells with a 
probability	of	1∕2 n, where n is the PCN; (4) the cost associated with 
plasmid bearing is constant in time (no compensatory adaptation). 
We parameterized the model using a well- characterized multi-
copy plasmid, pBGT (Hernandez- Beltran et al., 2020; Rodriguez- 
Beltran et al., 2018; San Millan et al., 2016), and estimated the 
maximal	growth	rates	of	plasmid-	bearing	and	plasmid-	free	cells	by	
analyzing growth kinetics of each strain grown in isolation. From 
the growth curves, we obtained estimates for the fitness cost as-
sociated with plasmid bearing and the fitness advantage of the 
plasmid- bearing cells for a range of antibiotic concentrations. We 
also	performed	1-	day	competition	experiments	between	different	
subpopulations of PB and PF cells and evaluated how this frac-
tion changed after a day of growth in media supplemented with 
antibiotics.	Using	this	approach,	we	obtained	theoretical	and	ex-
perimental iterative maps that we used to predict the long- term 
dynamics of the system.

Altogether,	our	results	suggest	that	plasmid	population	dynamics	
in	bacterial	populations	is	predominantly	driven	by	the	existence	of	
a trade- off between segregational loss and plasmid cost. We found 
that selection is necessary for the persistence of costly plasmids 
in the long term and that the strength of selection is highly cor-
related with the final fraction of plasmids in the entire population. 

As	a	result,	whether	plasmids	are	maintained	or	lost	in	the	long	term	
results	 from	 the	 complex	 interplay	 between	 PCN	 and	 its	 fitness	
cost, as well as the intensity and frequency of positive selection. 
As	 shown	 in	 the	 exhaustive	 exploration	 of	 parameters	 performed	
in this study, these relationships are highly nonlinear, thus resulting 
in	the	existence	of	an	optimal	PCN	that	depends	on	the	rate	of	en-
vironmental fluctuation, the number of plasmids carried in each cell, 
and the fitness burden conferred by each plasmid- encoded gene in 
the absence of selection. In random environments, we observed a 
bimodal PCN* distribution, similar to the plasmid size distribution 
described for nontransmissible plasmids (Smillie et al., 2010) and for 
conjugative plasmids (Ledda & Ferretti, 2014).

Although	both	our	theoretical	and	experimental	models	consider	
a	multicopy	plasmid	with	 random	segregation,	 the	existence	of	an	
optimal PCN should also hold for nonrandom segregation (e.g., ac-
tive partitioning), as this would decrease the probability of segrega-
tional loss (which corresponds to having a smaller value of μn in our 
model) so its optimal copy number will likely be lower than a plasmid 
that relies on random segregation (Lopez et al., 2021). By contrast, 
compensatory adaptation that reduces the fitness cost associated 
with plasmid bearing (in our model, a lower value of κn), would result 
in	an	increase	in	PCN*.	We	conclude	by	arguing	that,	as	the	existence	
of plasmids in natural environments requires intermittent periods of 
positive selection, the presence of plasmids contains information 
on the environment in which a population has evolved. Indeed, the 
plasmid copy number associates the frequency of selection with the 
energetic costs of plasmid maintenance. That is, there is a minimum 
frequency	 of	 drug	 exposure	 that	 allows	multiple	 copies	 to	 persist	
in the population, and, for each environmental regime, there is an 
optimal number of plasmid copies.
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APPENDIX A

Experimental methods

BAC TERIAL S TR AINS AND MEDIA
The plasmid- free strain we used was E. coli K12 MG1655 and the 
plasmid- bearing strain was MG/pBGT carrying the multicopy plas-
mid pBGT with the β- lactamase blaTEM- 1, which confers resistance 
to ampicillin and the fluorescent protein GFP under an arabinose- 
inducible promoter. Mean plasmid copy number in the population is 
PCN =	19.1 ± 3.8	(San	Millan	et	al.,	2016). Overnight cultures were 
grown in flasks with 20 ml of lysogeny broth (LB; Sigma L3022) with 
0.5% w/v L- (+)-	Arabinose	 (Sigma	A91906)	 for	 fluorescence	 induc-
tion, in a shaker- incubator at 220 RPM at 37°C. For the plasmid- 
bearing	 strain,	 25 mg/L	 of	 ampicillin	 (Sigma	 A0166)	was	 added	 to	
eliminate	segregant	cells.	Ampicillin	stock	solutions	were	prepared	
at	 100 mg/ml	 directly	 in	 LB	 and	 sterilized	 by	 0.22 μm	 (Millex-	GS	
SLGS033SB)	 filtering.	Arabinose	 stock	 solutions	were	prepared	 at	
20% w/v in DD water and sterilized by filtration.

BAC TERIAL G ROW TH E XPERIMENTS
Growth kinetics measurements of each strain were performed in 
96-	well	plates	with	200 μl of LB with 0.5% w/v arabinose without 
antibiotics,	plates	were	sealed	using	X-	Pierce	film	(Sigma	Z722529),	
and each well seal film was pierced in the middle with a sterile needle 
to avoid condensation. Plates were grown at 37°C, and readings for 
OD	and	fluorescence	were	made	every	20 min	in	a	fluorescence	mi-
croplate reader (BioTek Synergy H1), after 30- s linear shaking.

COMPE TITION E XPERIMENTS
Competition	 experiments	 were	 performed	 using	 96-	well	 plates	
with	200 μl of LB with 0.5% w/v arabinose, and respective ampicillin 
concentrations: 0, 1, 2, 2.5, 3, 3.5, 4, and 6 mg/L were implemented 
by plate rows. To construct our inoculation plate, overnight cul-
tures of the plasmid- free strain and the plasmid- bearing strain were 
adjusted	to	an	OD	of	1	(630 nm)	using	a	BioTek	ELx808	Absorbance	
Microplate	 Reader	 diluted	with	 fresh	 ice-	cooled	 LB.	 Appropriate	
volumes	were	mixed	to	make	co-	cultures	at	fractions	0,	0.1,	0.2,…,	
1 and set column- wise on a 96- well plate (Corning CLS3370). We 
then used a 96- pin microplate replicator (Boekel 140500) with 
flame sterilization before each inoculation. Four replicates plates 
were	grown	in	static	incubator	at	37°C.	After	24-	h	growth,	plates	
were read in a fluorescence microplate reader (BioTek Synergy H1) 
using	 OD	 (630 nm)	 and	 eGFP	 (479,520 nm)	 after	 1	 min	 of	 linear	
shaking.

PL A SMID FR AC TION DE TERMINATION
To calculate the fluorescence intensity, we first subtracted the back-
ground signal of LB for fluorescence and OD, respectively, and then 
the debackgrounded the fluorescence signal was scaled by dividing 
by the debackgrounded OD. The measurements for our inocula-
tion plate showed a strong linear correlation (R2 = .995) between 
co- cultures fractions and fluorescence intensity (Figure 3b). This 

allowed	to	directly	approximate	 the	population's	plasmid	 fractions	
from	the	readings	of	our	competition	experiments.	We	normalized	
the data independently for each antibiotic concentration taking the 
average measurements of the four replicates. Plasmid fractions, 
PF, were inferred by normalizing the mean fluorescence intensity 
for each well, fi, to the interval [0,1] using the following formula: 
PFi = (fi − fmin)∕(fmax − fmin) were fmax and fmin are the mean fluores-
cence intensities at fractions 1 and 0, respectively.

APPENDIX B

Mathematical model

FIXED POINTS OF EQUATION (2 )
Let f = f ◦g.	We	want	to	study	the	fixed	points	of	f  and their domains 
of	attraction.	 It	 is	not	hard	to	see	that	0	 is	always	fixed	point,	and	
once the frequency reaches 0, it stays at 0. In addition, if x ≠ 0,

Denote x∗ ≔ 1 − �n

(
1 − �n

)
∕
(
� − �n

)
. Since the frequencies are 

in	[0,1],	this	fixed	point	only	exists	if	α > κn + μn(1 − κn).	As	n increases, 
μn	decreases	exponentially,	while	κn increases only linearly, so there 
is a nonlinear relationship between n and the minimum α required for 
the	existence	of	a	second	fixed	point	x*.

Let us analyze the stability of x*. Let us assume that α > κn + μn(1 − κn).

So, the frequency increases if it is below x* and decreases oth-
erwise,	meaning	that	 it	 is	a	stable	 fixed	point.	 In	addition,	 the	do-
main of attraction is (0,1], meaning that this equilibrium fraction is 
reached for any initial state.
To	sum	up,	0	is	always	a	fixed	point.	If	α > κn + μn(1 − κn), then there 

is	an	additional	stable	fixed	points	x*.

CHOICE OF THE MODEL
In this section, we compare two types of mathematical models 
for the evolution of plasmid- bearing frequencies, the discrete- 
time model used in this paper (Equation (2)) and the Wright– Fisher 
diffusion.

There had been several attempts to adapt the classical theory of 
Wright–	Fisher	models	to	this	experimental	setting	(see	for	example	
(Chevin, 2011)).	A	mathematical	rigorous	way	to	do	this	was	devel-
oped in González Casanova et al. (2016). In Gerrish & Lenski (1998) 

f(x)=
x
(
1−�n

)(
1−�n

)
∕
(
�−�n

)

(1−�)∕
(
�−�n

)
+x

=x

⇔x2+
1−�

�−�n

x=

(
1−�n

)(
1−�n

)
�−�n

x

⇔x=

(
1−�n

)(
1−�n

)
−(1−�)

�−�n

=1−�n

1−�n

�−�n

.

f(x)−x=
x
(
1−𝜅n

)(
1−𝜇n

)
∕
(
𝛼−𝜅n

)
−x(1−𝛼)∕

(
𝛼−𝜅n

)
−x2

(1−𝛼)∕
(
𝛼−𝜅n

)
+x

>0

⇔

(
1−𝜅n

)(
1−𝜇n

)
(
𝛼−𝜅n

) −
1−𝛼

𝛼−𝜅n

−x>0

⇔x<x∗.
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a heuristic and applicable to data framework was introduced. 
Recently, in Baake et al. (2019), the two methodologies had been 
paired in order to have a rigorous and applicable way to use classic 
population	genetics	to	study	evolutionary	experiments.	In	this	work,	
days take the role of generations, and as the number of individuals 
after each sampling is more or less constant, the assumption of con-
stant population size becomes reasonable.

Let us assume that the mutation rate �N,n = 2−n and the cost κN,n 
are parameterized by N. To see the accumulated effects of plasmid 
costs, segregational loss, and genetic drift, we need κN,n and μN,n to 
be	of	order	1∕N (see, e.g., Chapter 5 in Etheridge, 2011). The first 
condition	is	fulfilled	if	the	cost	per	plasmid	is	very	low,	for	example,	
when κN,n = κn∕N. The second one stands if n is of order log2(N), 
which	is	the	case,	for	example,	if	n = 20 and N = 10 (Pemberton & 
Don, 1981), or if n = 15 and N =	10	(Alonso	&	Tolmasky,	2020). In 
that case, we set μ = N2−n. Under this setting, when time is acceler-
ated by N, the frequency process of individuals with plasmids can be 
approximated	by	the	solution	of	the	stochastic	differential	equation	
(SDE).

where B is a standard Brownian motion. This is known as the Wright– 
Fisher diffusion with mutation and selection. When antibiotic is added, 
at times {T,2T,…}, then (5) modifies to

However,	in	our	experimental	setting,	the	cost	that	we	measure	
(�n ≃ 0.27) is much higher than the inverse population size, so we are 
in the regime of strong selection. In other words, for plasmids that 
have	a	very	small	cost,	of	the	order	of	1∕N, genetic drift would play 
an important role, and the above Wright– Fisher diffusion with muta-
tion, selection and antibiotic peaks (6) would be the most suitable 
model. But in our setting, selection (plasmid costs) is so high that 
genetic drift becomes negligible. Recall that Equation (2) does not 
need any time rescaling, whereas in the diffusion (6) time is meas-
ured in units of N generations. Under strong selection, the frequen-
cies evolve much faster.

APPENDIX C

Numerical simulations

COMPUTER IMPLEMENTATION
The model was implemented in Python, using standard scientific com-
puting libraries (Numpy, MatplotLib, and the Decimal library were re-
quired to resolve small numbers conflicts). In general, all simulations 
started at PB frequency 1 (unless stated otherwise). Numeric simula-
tions were defined to reach a steady state when values first repeat. 
In the case of periodic environments, the repetition must happen at 
antibiotic	peak	days.	We	considered	extinction	if	the	end	point	of	the	
realization dropped below a threshold adjusted to the simulations 
times,	the	highest	being	1 × 10−7	and	the	lowest	1 × 10−100.

R ANDOM ENVIRONMENTS
Environmental sequences of size 1000 (days) using a binomial dis-
tribution varying the probability of success. For each environment 
created, we also bit- flipped (so 101… turns into 010…) and two 
measures were applied to each resulting environment. First, we 
used Shannon entropy, H(Env) = −

∑n

i
pilogn

�
pi
�
, with two states, 

n = 2 (antibiotic or no- antibiotic) and pi equal to the probability of 
finding a state day, that is, the fractions of days with antibiotics and 
without antibiotics. We classified environments by their H and by 
the fraction of antibiotic days, as being this an important feature. 
These two measures are in the [0,1] interval, so we binned the inter-
vals into 20 bins and 1000 environments were created for each bin.

MODEL PAR AME TRIZ ATION
Growth kinetics parameters were estimated using the R (R Core 
Team, 2020) package growth rates (Petzoldt, 2019).	 Exponential	
phase duration, σ, was calculated by finding lag phase duration 
and the time to reach carrying capacity using the nonlinear growth 
model	Baranyi.	Maximum	growth	rates,	r and r + ρn, were estimated 
using the nonparametric smoothing splines method. κn value was es-
timated using Equation (1) and the data from the antibiotic- free com-
petition	experiment	using	a	curve	fitting	algorithm	from	the	SciPy	
library in a custom Python script. Respective values of α were found 
in the same manner using Equation (2)	and	fixing	κn. κn was also calcu-
lated using the formula in Equation (4) with a very similar result. The 
parameters are summarized in Tables 1 and 2.

(5)dXt = − �Xtdt − �Xt
(
1 − Xt

)
dt +

√
Xt
(
1 − Xt

)
dBt ,

(6)

dXt =
∑
j≥ 1

�XjT−
(
1 − XjT−

)

1 − �

(
1 − XjT−

)1jT≤t − �Xtdt − �Xt
(
1 − Xt

)
dt +

√
Xt
(
1 − Xt

)
dBt .
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